

UVM Advanced

Course Description

This 4-days course designed for advanced ASIC & FPGA verification engineers that would like
to enhance their UVM skills to verify complex digital designs more efficiently.

The training is loaded with extensive practical hands-on labs to verify that the theory is
understood plus introduce more use cases than covered in theory slides.

The first day teaches how to create a complex stimuli generation with various advanced
techniques. Master-slave protocol is covered in details.

The second day starts with introduction of the advanced synchronization using the callback
class, along with barrier synchronization, and the uvm_event class.

The day continuous by covering the end-of-test mechanism, how to raise and drop
objections, how to debug UVM objections and how to set TB drain time.

The third day covers the connection reusability between DUT and top TB including BFM, port
connection, how to extract RTL parameters vs using package, the bind construct, UVM
harness, and races between TB and DUT.

The fourth day covers design patterns, how to create them, what is a singleton pattern.

The training ends by covering how to handle exceptional situation such as reset, error
injection and the uvm_heartbeat.

Course Duration

4 days

Goals

1. Generate complex stimuli using master-slave protocol, streaming operator to

pack/unpack transactions, matching and different responses, packing dynamic data
2. Synchronize your transactions using the callback class and macros
3. Control the end-of-test mechanism
4. Reuse TB-DUT connectivity
5. Use design patterns
6. Handle exceptional situations

Intended Users

Hardware/Software verification engineers who would like to enhance their skills for
ASIC/FPGA designs with advanced UVM techniques.

Prerequisites

1. UVM fundamentals
2. SystemVerilog language
3. Verification guidelines
4. Experience with simulator

Course Material

1. Course book
2. Lab handbook (Phyton notebooks)
3. Virtual Machine with all necessary tools
4. Trainer solutions to all labs

Table of Contents

Day #1

 Advanced Stimuli Generation
o Bidirectional and Pipelined Drivers
o The get() vs. get_next_item() Method
o A Proactive Master Agent
o A Reactive Slave Agent
o Data Flow in Proactive and Reactive Agents
o Sending Data Back to the Sequencer
o Creating Reactive Sequences

o Lab #1: Reactive Slave

 Create a reactive agent
 Create a reactive sequence
 Provide bidirectional communication between the driver and

the sequencer
 Retrieve the response in a sequence
 Run the sequence, subsequence and sequence items in several

different ways

 Layered Protocols
o Layered protocols introduction
o Policy Classes
o Using Policy Objects
o The uvm_packer Class
o Packing and Unpacking Methods
o Packing Dynamic Structures - Metadata
o Architectures of Layered Agents
o Layered Sequences
o Layered Agent
o Layered Monitor

o Lab #2: Layered Agents

 Use the methods and macros of the uvm_packer class to
convert data into a bitstream

 Customize the behavior of the `uvm_packer` class - using
metadata

 Create a translating sequence that converts a higher-level data
unit into a lower-level data unit

 Create components that perform reverse translation
 Build a layered protocol agent

Day #2

 Advanced Synchronization
o Defining a Callback Class
o Implementing Specific Callbacks
o Inserting Callbacks into Component
o Registering Callbacks
o The uvm_event_callback Class
o Barrier Synchronization
o The uvm_barrier Class
o The uvm_barrier_pool Class
o Waiting For an Event – Races
o Persistent Trigger vs. the @ Operator
o The uvm_event Class
o The uvm_event_pool Class

o Lab #3: Advanced Synchronization

 Define custom callback classes
 Create & register custom callback objects
 Create named events and trigger them
 Use uvm_event and uvm_event_callback objects

 End-of-Test Mechanism
o Objection Mechanism
o Raising and Dropping Objections
o Propagating Objections
o The set_propagate_mode() Method
o Automatic Raising and Dropping Objections in UVM-1.2
o Debugging UVM Objection
o Drain Time and Timeout
o The phase_ready_to_end() Method

o Lab #4: UVM Objections

 Replace manual raising and dropping objections in sequences
 Debug issues with objections
 Improve simulation performance by changing the objection

propagation mode
 Set the drain time and timeout in the test
 Check if the component is ready to move to the next phase

Day #3

 Reusability
o Code reuse
o Horizontal reuse
o Vertical reuse
o D from SOLID - Dependency Inversion Principle
o Passive Environments
o Stimulus Reuse
o The uvm_sequence_library Class
o Configurations Encapsulation
o Interfaces Encapsulation
o Namespace Collisions

o Lab 5: SoC -Level Testbench

 Instantiate the environment at the block-level within the chip-
level environment

 Ensure hierarchical configuration
 Create a custom implementation of the uvm_report_catcher

class

 DUT-TB Connection
o Bus Functional Model (BFM)
o Extracting RTL Parameters
o Tuning TB with RTL Parameters
o Traditional DUT to TB Connection
o SystemVerilog bind Construct
o UVM Harness
o Ports Width Mismatch
o Races between TB and DUT
o SystemVerilog Clocking Blocks
o Clocking Blocks in UVM Environment

o Lab 6: UVM Harness

 Use clocking blocks to mitigate races between DUT and TB
 Apply the polymorphic interface technique
 Encapsulate module interfaces into a single reusable interface

- UVM Harness
 Connect the UVM Harness to a RTL module using the “bind”

directive
 Retrieve RTL parameters and pass them to the environment

Day #4

 Design Patterns
o Design patterns introduction
o Design Patterns in SW
o Creational Patterns
o Singleton Pattern
o The uvm_coreservice_t Class
o The uvm_root Class
o The uvm_config_db Class
o The uvm_cmdline_processor Class

o Lab 7: Singleton Pattern in UVM
 Access selected UVM services using the uvm_coreservice_t

class
 Modify the environment configuration using the command-

line processor
 Pass data using uvm_config_db in various scenarios
 Use factory methods to override components in various

scenarios

 Exceptional Situations
o Reset handling strategies
o Error injection
o Is my TB still alive? The uvm_heartbeat class

o Lab 8: Handling Exceptions

