
 

 

UVM Advanced 

 

Course Description 

This 4-days course designed for advanced ASIC & FPGA verification engineers that would like 
to enhance their UVM skills to verify complex digital designs more efficiently. 

The training is loaded with extensive practical hands-on labs to verify that the theory is 
understood plus introduce more use cases than covered in theory slides. 

The first day introduces the self-checking testbench approach and how to create a 
scoreboard, then virtual sequences and virtual sequencers concept is introduced in details 
for complex use cases. 

The second day teaches how to create a complex stimuli generation with various advanced 
techniques. Master-slave protocol is covered in details. 

The third day starts with introduction of the advanced synchronization using the callback 
class, along with barrier synchronization, and the uvm_event class. 

The day continuous by covering the end-of-test mechanism, how to raise and drop 
objections, how to debug UVM objections and how to set TB drain time. 

The fourth day covers the connection reusability between DUT and top TB including BFM, 
port coerction, how to extract RTL parameters vs using package, the bind construct, UVM 
harness, and races between TB and DUT. 

The training ends by covering how to handle exceptional situation such as reset, error 
injection and the uvm_heartbeat. 

 

 

Course Duration   

4 days 

 

 

 



 

 

Goals    

 
1. Implement an advanced scoreboard 
2. Use in order and out of order comparator types 
3. Buffer your transactions 
4. Create virtual sequences and virtual sequencers 
5. Generate complex stimuli using master-slave protocol, streaming operator to 

pack/unpack transactions, matching and different responses, packing dynamic data 
6. Synchronize your transactions using the callback class and macros 
7. Control the end-of-test mechanism 
8. Reuse TB-DUT connectivity 
9. Handle exceptional situations 

 

Intended Users 

Hardware/Software verification engineers who would like to enhance their skills for 
ASIC/FPGA designs with advanced UVM techniques. 

Prerequisites  

1. UVM fundamentals 
2. SystemVerilog language  
3. Verification guidelines  
4. Experience with simulator  

  

Course Material 

1. Course book  
2. Lab handbook (Phyton notebooks) 
3. Virtual Machine with all necessary tools  
4. Trainer solutions to all labs 
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